De modulativ egenskap Det er den som tillater operasjoner med tallene uten å endre resultatet av likeverd. Dette er spesielt nyttig senere i algebra, siden å multiplisere eller legge til med faktorer som ikke endrer resultatet, muliggjør forenkling av noen ligninger..
For addisjon og subtraksjon endres ikke resultatet ved å legge til null. Når det gjelder multiplikasjon og divisjon, endrer ikke multiplisering eller deling med en heller ikke resultatet. For eksempel er det fortsatt å legge til 5 til 0. Å multiplisere 1000 med 1 er fortsatt 1000.
Faktorene null for tillegg og en for multiplikasjon er modulære for disse operasjonene. Aritmetiske operasjoner har flere egenskaper i tillegg til den modulative egenskapen, som bidrar til å løse matematiske problemer.
De aritmetiske operasjonene er addisjon, subtraksjon, multiplikasjon og divisjon. Vi skal jobbe med settet med naturlige tall.
Egenskapen kalt nøytralt element lar oss legge til et tillegg uten å endre resultatet. Dette forteller oss at null er det nøytrale elementet i summen.
Som sådan sies det å være modul for tillegg og derav det modulative eiendomsnavnet.
For eksempel:
(3 + 5) + 9 + 4 + 0 = 21
4 + 5 + 9 + 3 + 0 = 21
2 + 3 + 0 = 5
1000 + 8 + 0 = 1008
500 + 0 = 500
233 + 1 + 0 = 234
25000 + 0 = 25000
1623 + 2 + 0 = 1625
400 + 0 = 400
869 + 3 + 1 + 0 = 873
78 + 0 = 78
542 + 0 = 542
36750 + 0 = 36750
789 + 0 = 789
560 + 3 + 0 = 563
1500000 + 0 = 1500000
7500 + 0 = 7500
658 + 0 = 658
345 + 0 = 345
13562000 + 0 = 13562000
500000 + 0 = 500000
322 + 0 = 322
14600 + 0 = 14600
900000 + 0 = 900000
Den modulative egenskapen gjelder også for heltall:
(-3) +4+ (-5) = (-3) +4+ (-5) +0
(-33) + (- 1) = (-33) + (- 1) +0
-1 + 35 = -1 + 35 + 0
260000 + (- 12) = 260000 + (- 12) +0
(-500) +32 + (- 1) = (-500) +32 + (- 1) +0
1750000 + (- 250) = 1750000 + (- 250) +0
350000 + (- 580) + (- 2) = 350000 + (- 580) + (- 2) +0
(-78) + (- 56809) = (-78) + (- 56809) +0
8 + 5 + (- 58) = 8 + 5 + (- 58) +0
689 + 854 + (- 78900) = 689 + 854 + (- 78900) +0
1 + 2 + (- 6) + 7 = 1 + 2 + (- 6) + 7 + 0
Og på samme måte for rasjonelle tall:
2/5 + 3/4 = 2/5 + 3/4 + 0
5/8 + 4/7 = 5/8 + 4/7 + 0
½ + 1/4 + 2/5 = ½ + 1/4 + 2/5 + 0
1/3 + 1/2 = 1/3 + 1/2 + 0
7/8 + 1 = 7/8 + 1 + 0
3/8 + 5/8 = 3/8 + 5/8 + 0
7/9 + 2/5 + 1/2 = 7/9 + 2/5 + 1/2 + 0
3/7 + 12/133 = 3/7 + 12/133 + 0
6/8 + 2 + 3 = 6/8 + 2 + 3 + 0
233/135 + 85/9 = 233/135 + 85/9 + 0
9/8 + 1/3 + 7/2 = 9/8 + 1/3 + 9/8 + 0
1236/122 + 45/89 = 1236/122 + 45/89 + 0
24362/745 + 12000 = 24635/745 + 12000 + 0
Også for det irrasjonelle:
e + √2 = e + √2 + 0
√78 + 1 = √78 + 1 + 0
√9 + √7 + √3 = √9 + √7 + √3 + 0
√7120 + e = √7120 + e + 0
√6 + √200 = √6 + √200 + 0
√56 + 1/4 = √56 + 1/4 + 0
√8 + √35 + √7 = √8 + √35 + √7 + 0
√742 + √3 + 800 = √742 + √3 + 800 + 0
V18 / 4 + √7 / 6 = √18 / 4 + √7 / 6 + 0
√3200 + √3 + √8 + √35 = √3200 + √3 + √8 + √35 + 0
√12 + e + √5 = √12 + e + √5 + 0
√30 / 12 + e / 2 = √30 / 12 + e / 2
√2500 + √365000 = √2500 + √365000 + 0
√170 + √13 + e + √79 = √170 + √13 + e + √79 + 0
Og det samme for alle de virkelige.
2,15 + 3 = 2,15 + 3 + 0
144,12 + 19 + √3 = 144,12 + 19 + √3 + 0
788500 + 13,52 + 18,70 + 1/4 = 788500 + 13,52 + 18,70 + 1/4 + 0
3,14 + 200 + 1 = 3,14 + 200 + 1 + 0
2,4 + 1,2 + 300 = 2,4 + 1,2 + 300 + 0
√35 + 1/4 = √35 + 1/4 + 0
e + 1 = e + 1 + 0
7,32 + 12 + 1/2 = 7,32 + 12 + 1/2 + 0
200 + 500 + 25,12 = 200 + 500 + 25,12 + 0
1000000 + 540,32 + 1/3 = 1000000 + 540,32 + 1/3 +0
400 + 325,48 + 1,5 = 400 + 325 + 1,5 + 0
1200 + 3,5 = 1200 + 3,5 + 0
Å bruke den modulative egenskapen, som i tillegg, null endrer ikke resultatet av subtraksjonen:
4-3 = 4-3-0
8-0-5 = 8-5-0
800-1 = 800-1-0
1500-250-9 = 1500-250-9-0
Det er sant for heltallene:
-4-7 = -4-7-0
78-1 = 78-1-0
4500000-650000 = 4500000-650000-0
-45-60-6 = -45-60-6-0
-760-500 = -760-500-0
4750-877 = 4750-877-0
-356-200-4 = 356-200-4-0
45-40 = 45-40-0
58-879 = 58-879-0
360-60 = 360-60-0
1250000-1 = 1250000-1-0
3-2-98 = 3-2-98-0
10000-1000 = 10000-1000-0
745-232 = 745-232-0
3800-850-47 = 3800-850-47-0
For begrunnelsene:
3 / 4-2 / 4 = 3 / 4-2 / 4-0
120 / 89-1 / 2 = 120 / 89-1 / 2-0
1 / 32-1 / 7-1 / 2 = 1 / 32-1 / 7-1 / 2-0
20 / 87-5 / 8 = 20 / 87-5 / 8-0
132 / 36-1 / 4-1 / 8 = 132 / 36-1 / 4-1 / 8
2 / 3-5 / 8 = 2 / 3-5 / 8-0
1 / 56-1 / 7-1 / 3 = 1 / 56-1 / 7-1 / 3-0
25 / 8-45 / 89 = 25 / 8-45 / 89 -0
3 / 4-5 / 8-6 / 74 = 3 / 4-5 / 8-6 / 74-0
5 / 8-1 / 8-2 / 3 = 5 / 8-1 / 8-2 / 3-0
1 / 120-1 / 200 = 1 / 120-1 / 200-0
1 / 5000-9 / 600-1 / 2 = 1 / 5000-9 / 600-1 / 2-0
3 / 7-3 / 4 = 3 / 7-3 / 4-0
Også for det irrasjonelle:
Π-1 = Π-1-0
e-√2 = e-√2-0
√3-1 = √-1-0
√250-√9-√3 = √250-√9-√3-0
√85-√32 = √85-√32-0
√5-√92-√2500 = √5-√92-√2500
√180-12 = √180-12-0
√2-√3-√5-√120 = √2-√3-√5-120
15-√7-√32 = 15-√7-√32-0
V2 / √5-√2-1 = √2 / √5-√2-1-0
√18-3-√8-√52 = √18-3-√8-√52-0
√7-√12-√5 = √7-√12-√5-0
√5-e / 2 = √5-e / 2-0
√15-1 = √15-1-0
√2-√14-e = √2-√14-e-0
Og generelt sett for de virkelige:
π -e = π-e-0
-12-1,5 = -12-1,5-0
100000-1 / 3-14,50 = 100000-1 / 3-14,50-0
300-25-1.3 = 300-25-1.3-0
4,5-2 = 4,5-2-0
-145-20 = -145-20-0
3.16-10-12 = 3.16-10-12-0
π-3 = π-3-0
π / 2- π / 4 = π / 2- π / 4-0
325.19-80 = 329.19-80-0
-54,32-10-78 = -54,32-10-78-0
-10000-120 = -10000-120-0
-58,4-6,52-1 = -58,4-6,52-1-0
-312,14-√2 = -312,14-√2-0
Denne matematiske operasjonen har også sitt nøytrale element eller modulative egenskap:
3x7x1 = 3 × 7
(5 × 4) x3 = (5 × 4) x3x1
Hvilket er tallet 1, siden det ikke endrer resultatet av multiplikasjonen.
Dette gjelder også for heltall:
2 × 3 = -2x3x1
14000 × 2 = 14000x2x1
256x12x33 = 256x14x33x1
1450x4x65 = 1450x4x65x1
12 × 3 = 12x3x1
500 × 2 = 500x2x1
652x65x32 = 652x65x32x1
100x2x32 = 100x2x32x1
10000 × 2 = 10000x2x1
4x5x3200 = 4x5x3200x1
50000x3x14 = 50000x3x14x1
25 × 2 = 25x2x1
250 × 36 = 250x36x1
1500000 × 2 = 1500000x2x1
478 × 5 = 478x5x1
For begrunnelsene:
(2/3) x1 = 2/3
(1/4) x (2/3) = (1/4) x (2/3) x1
(3/8) x (5/8) = (3/8) x (5/8) x1
(12/89) x (1/2) = (12/89) x (1/2) x1
(3/8) x (7/8) x (6/7) = (3/8) x (7/8) x (6/7) x 1
(1/2) x (5/8) = (1/2) x (5/8) x 1
1 x (15/8) = 15/8
(4/96) x (1/5) x (1/7) = (4/96) x (1/5) x (1/7) x1
(1/8) x (1/79) = (1/8) x (1/79) x 1
(200/560) x (2/3) = (200/560) x 1
(9/8) x (5/6) = (9/8) x (5/6) x 1
For det irrasjonelle:
e x 1 = e
√2 x √6 = √2 x √6 x1
√500 x 1 = √500
√12 x √32 x √3 = V√12 x √32 x √3 x 1
√8 x 1/2 = √8 x 1/2 x1
√320 x √5 x √9 x √23 = √320 x √5 √9 x √23 x1
√2 x 5/8 = √2 x5 / 8 x1
√32 x √5 / 2 = √32 + √5 / 2 x1
e x √2 = e x √2 x 1
(π / 2) x (3/4) = (π / 2) x (34) x 1
π x √3 = π x √3 x 1
Og til slutt for de virkelige:
2 718 × 1 = 2 718
-325 x (-2) = -325 x (-2) x1
10 000 x (25,21) = 10 000 x (25,21) x 1
-2012 x (-45,52) = -2012 x (-45,52) x 1
-13,50 x (-π / 2) = 13,50 x (-π / 2) x 1
-π x √250 = -π x √250 x 1
-√250 x (1/3) x (190) = -√250 x (1/3) x (190) x 1
-(√3 / 2) x (√7) = - (√3 / 2) x (√7) x 1
-12,50 x (400,53) = 12,50 x (400,53) x 1
1 x (-5638.12) = -5638.12
210,69 x 15,10 = 210,69 x 15,10 x 1
Det nøytrale delingselementet er det samme som i multiplikasjon, tallet 1. En gitt størrelse delt på 1 vil gi det samme resultatet:
34 ÷ 1 = 34
7 ÷ 1 = 7
200000 ÷ 1 = 200000
Eller hva er det samme:
200000/1 = 200000
Dette gjelder for hvert heltall:
8/1 = 8
250/1 = 250
1000000/1 = 1000000
36/1 = 36
50000/1 = 50000
1/1 = 1
360/1 = 360
24/1 = 24
2500000/1 = 250000
365/1 = 365
Og også for hver rasjonelle:
(3/4) ÷ 1 = 3/4
(3/8) ÷ 1 = 3/8
(1/2) ÷ 1 = 1/2
(47/12) ÷ 1 = 47/12
(5/4) ÷ 1 = 5/4
(700/12) ÷ 1 = 700/12
(1/4) ÷ 1 = 1/4
(7/8) ÷ 1 = 7/8
For hvert irrasjonelle nummer:
π / 1 = π
(π / 2) / 1 = π / 2
(√3 / 2) / 1 = √3 / 2
√120 / 1 = √120
√8500 / 1 = √8500
√12 / 1 = √12
(π / 4) / 1 = π / 4
Og generelt sett for alle reelle tall:
3.14159 / 1 = 3.14159
-18/1 = -18
16.32 ÷ 1 = 16.32
-185000,23 ÷ 1 = -185000,23
-10.000.40 ÷ 1 = -10.000.40
156.30 ÷ 1 = 156.30
900000, 10 ÷ 1 = 900000.10
1.325 ÷ 1 = 1.325
Den modulative egenskapen er viktig i algebraiske operasjoner, siden gjenstanden for å multiplisere eller dele med et algebraisk element hvis verdi er 1, ikke endrer ligningen.
Du kan imidlertid forenkle operasjonene med variablene for å få et enklere uttrykk og oppnå løsningsligninger på en enklere måte.
Generelt er alle matematiske egenskaper nødvendige for studier og utvikling av vitenskapelige hypoteser og teorier..
Vår verden er full av fenomener som stadig blir observert og studert av forskere. Disse fenomenene uttrykkes med matematiske modeller for å lette deres analyse og etterfølgende forståelse..
På denne måten kan man blant annet forutsi fremtidig atferd, noe som gir store fordeler som forbedrer folks livsstil..
Ingen har kommentert denne artikkelen ennå.