Kurtosis definisjon, typer, formler, hva det er for, for eksempel

5043
Sherman Hoover

De kurtose eller kurtose Det er en statistisk parameter som tjener til å karakterisere sannsynlighetsfordelingen til en tilfeldig variabel, som indikerer graden av konsentrasjon av verdiene rundt det sentrale målet. Dette er også kjent som "toppkarakter".

Begrepet kommer fra det greske "kurtos" som betyr buet, derfor indikerer kurtosen graden av peking eller flating av fordelingen, som vist i følgende figur:

Figur 1. Ulike typer kurtose. Kilde: F. Zapata.

Nesten alle verdiene til en tilfeldig variabel har en tendens til å samle seg rundt en sentral verdi som gjennomsnittet. Men i noen distribusjoner er verdiene mer spredt enn i andre, noe som resulterer i flatere eller tynnere kurver..

Artikkelindeks

  • 1 Definisjon
  • 2 Formler og ligninger
    • 2.1 - Kurtosis i henhold til presentasjonen av dataene
  • 3 Hva er kurtosis for?
    • 3.1 Lønn til 3 avdelinger
    • 3.2 Resultatene av en eksamen
  • 4 Arbeidet eksempel på kurtose
  • 5 Referanser

Definisjon

Kurtosen er en numerisk verdi som er typisk for hver frekvensfordeling, som i henhold til konsentrasjonen av verdiene rundt gjennomsnittet, er klassifisert i tre grupper:

-Leptokurtic: der verdiene er høyt gruppert rundt gjennomsnittet, slik at fordelingen er ganske spiss og slank, (figur 1 til venstre).

-Mesocúrtic: har en moderat konsentrasjon av verdier rundt gjennomsnittet (figur 1 i sentrum).

-Platicúrtica: Denne fordelingen har en bredere form, ettersom verdiene pleier å være mer spredt (figur 1 til høyre).

Formler og ligninger

Kurtosen kan ha hvilken som helst verdi, uten begrensninger. Beregningen utføres avhengig av måten dataene leveres på. Notasjonen som brukes i hvert tilfelle er følgende:

-Kurtosis koeffisient: gto

-Aritmetisk gjennomsnitt: X eller x med bar

-En i-th verdi: xJeg

-Standardavviket: σ

-Antall data: N

-Frekvensen til i-th-verdien: FJeg

-Klassemerke: mxJeg

Med denne notasjonen presenterer vi noen av de mest brukte formlene for å finne kurtosis:

- Kurtosis i henhold til presentasjonen av dataene

Data ikke gruppert eller gruppert i frekvenser

Data gruppert i intervaller

Kurtosis overflødig

Også kalt Fishers pekekoeffisient eller Fisher-tiltak, tjener til å sammenligne fordelingen under studiet med normalfordelingen.

Når overflødig kurtose er 0, er vi i nærvær av en normalfordeling eller Gaussisk bjelle. På denne måten, når vi beregner overflødig kurtose i en fordeling, sammenligner vi den faktisk med normalfordelingen.

For både ikke-grupperte og samlede data er Fishers pekekoeffisient, betegnet med K:

K = gto - 3

Nå kan det vises at kurtosen til normalfordelingen er 3, hvis Fisher-pekekoeffisienten er 0 eller nær 0 og det er en mesokúrtisk fordeling. Hvis K> 0 er fordelingen leptokurtisk og hvis K<0 es platicúrtica.

Hva er kurtosis for?

Kurtosis er et mål på variabilitet som brukes til å karakterisere morfologien til en distribusjon. På denne måten kan symmetriske fordelinger sammenlignes med samme gjennomsnitt og samme spredning (gitt av standardavviket)..

Å ha målinger av variabilitet sikrer at gjennomsnittene er pålitelige og hjelper til med å kontrollere variasjoner i fordelingen. La oss som et eksempel analysere disse to situasjonene.

Lønn til 3 avdelinger

Anta at følgende graf viser lønnsfordelingen til 3 avdelinger i samme selskap:

Figur 2. Tre distribusjoner med ulik kurtose illustrerer praktiske situasjoner. (Utarbeidet av Fanny Zapata)

Kurve A er den tynneste av alle, og ut fra dens form kan det utledes at de fleste av lønnene til den avdelingen er veldig nær gjennomsnittet, derfor får de fleste av de ansatte tilsvarende kompensasjon.

På den annen side, i avdeling B, følger lønnskurven en normalfordeling, siden kurven er mesokurisk, der vi antar at lønnene var tilfeldig fordelt.

Og til slutt har vi kurve C, som er veldig flat, et tegn på at i denne avdelingen er lønnsområdet mye bredere enn i de andre..

Resultatene av en eksamen

Anta nå at de tre kurvene i figur 2 representerer resultatene av en eksamen som ble brukt på tre grupper studenter med samme emne.

Gruppen med rangeringer er representert av den leptokurtiske kurven A, er ganske homogen, flertallet oppnådde en gjennomsnittlig eller nær vurdering.

Det er også mulig at resultatet skyldtes at testspørsmålene hadde mer eller mindre samme vanskelighetsgrad.

På den annen side indikerer resultatene fra gruppe C en større heterogenitet i gruppen, som sannsynligvis inneholder gjennomsnittlige studenter, noen mer fordelaktige studenter og sikkert noen mindre oppmerksomme.

Eller det kan bety at testspørsmålene hadde svært forskjellige vanskelighetsgrader.

Kurve B er mesokutisk, noe som indikerer at testresultatene fulgte en normalfordeling. Dette er vanligvis den hyppigste saken.

Arbeidet eksempel på kurtose

Finn Fishers poengkoeffisient for følgende karakterer, oppnådd i en fysikkeksamen til en gruppe studenter, med en skala fra 1 til 10:

5, 5, 4, 7, 7,7, 9, 8, 9, 4, 3

Løsning

Følgende uttrykk vil bli brukt for ikke-grupperte data, gitt i de foregående avsnittene:

K = gto - 3

Denne verdien gjør det mulig å vite distribusjonstypen.

For å beregne gto Det er praktisk å gjøre det på en ryddig måte, trinnvis, siden du må løse flere regneoperasjoner.

Trinn 1

For det første beregnes gjennomsnittet av karakterene. Det er N = 11 data.

X = (5 + 5 + 4 + 7 + 7 + 7 + 9 + 8 + 9 + 4 + 3) / 11 = 6.182

Steg 2

Standardavviket er funnet, som denne ligningen brukes for:

σ = 1,992

Eller du kan også lage en tabell, som også kreves for neste trinn, og der hver periode av tilleggene som vil være skrevet, begynner med (xJeg - X), deretter (xJeg - X)to og deretter (xJeg - X):

Trinn 3

Gjennomfør summen som er angitt i telleren av formelen for gto. For dette brukes resultatet av høyre kolonne i forrige tabell:

∑ (xJeg - X)4= 290,15

Derfor:

gto = (1/11) x 290,15 / 1,9924 = 1.675

Fishers pekekoeffisient er:

K = gto - 3 = 1.675 - 3 = -1.325

Det som er av interesse er tegn på resultatet, som, negativt, tilsvarer en platisk distribusjon, som kan tolkes som ble gjort i forrige eksempel: muligens er det et heterogent kurs med studenter av ulik grad av interesse eller eksamen spørsmålene hadde forskjellige vanskelighetsgrader.

Bruken av et regneark som Excel, letter i stor grad løsningen på disse typer problemer, og gir også muligheten til å tegne grafisk distribusjon.

Referanser

  1. Levin, R. 1988. Statistikk for administratorer. 2. plass. Utgave. Prentice hall.
  2. Marco, F. Curtosis. Gjenopprettet fra: economipedia.com.
  3. Oliva, J. Asymmetri og kurtose. Gjenopprettet fra: Estadisticaucv.files.wordpress.com.
  4. Spurr, W. 1982. Decision Making in Management. Limusa.
  5. Wikipedia. Kurtosis. Gjenopprettet fra: en.wikipedia.org.

Ingen har kommentert denne artikkelen ennå.